
VCA Task Script Language Specification

VCA Task Script Language Specification | 2

08/16/2023 | Bosch Security Systems B.V.

Table of Contents

1 Definitions ..4

2 System Integration...6

3 Syntax ...9

4 Change History...38

VCA Task Script Language Specification | | 3

08/16/2023| Bosch Security Systems B.V.

•
•
•
•
•
•
•

•
•
•

•
•

•
•

•
•
•

•
•
•
•
•
•
•
•
•

•
•
•

•
•
•

•
•
•
•

•
•
•
•
•
•

•

Definitions
Events & States
Properties
Rules
Rule Engine
Method of describing syntax
Predefined syntax elements

System Integration
System Overview
User-defined Tasks

Syntax
Types

Basic Types
Attributes

Comments
Script normalization
Primitives

Field
Line
Route
Loitering
ColorHistogram
FlowDetector
CrowdDensityEstimator
MotionDetector
SoundDetector

Object-Specific Events
Counter
Object Events

Object Properties
Tamper States
User-defined States

SimpleStates
Boolean Composition of Conditions
Properties in Conditions
ObjectStates

User-defined Events
Basic Syntax
Temporal Relations
Conditions
State Changes
Temporary States

Change History

VCA Task Script Language Specification | Definitions| 4

08/16/2023| Bosch Security Systems B.V.

1 Definitions

1.1 Events & States
Whereas states are temporal functions, events occur each time a state changes its value. The query language
provides both, events and states, because of the different operations defined for them. On the one hand, events
allow expressing temporal relations between objects. On the other hand, non-temporal (e.g. spatial) relations of
objects are more easily described by states.

1.2 Properties
In order to distinguish between Boolean and non-Boolean states, the notion property is introduced referring to
non-Boolean states.

1.3 Rules
When speaking about rules, both - events and states - are meant which are output by the rule engine, i.e. which
have been declared external. A rule is said to be active, if the corresponding state is active or the corresponding
event has been triggered. In case of an event, the corresponding rule is active from the frame on where the event
has been triggered to the next processed frame where the rule is inactive again.

1.4 Rule Engine
The rule engine parses the output of the video content analysis module and searches within this stream for rules
defined according to the VCA Task Script Language.

1.5 Method of describing syntax
The following elements <> , [] , OR , and | are not part of the VCA task script language syntax. These

elements are used to describe classes of syntax elements (e.g. <n> for an number which needs to be defined),

optional elements (e.g. [DebounceTime(4)] for element which can be omitted) and alternative elements (e.g.

(HasClass|HadClass) OR HasColor). A repetition of syntax elements are signalized with dots ... (e.g.

Point(<x>,<y>) ... Point(<x>,<y>)).

1.6 Predefined syntax elements
<i> := An unique internal ID of an event, state, loitering, color histogram, field or counter which is a integer

number from 1 to 32.

<n> := An unique ID of an external event, external state, or Line which is a integer number from 1 to 16.

<j> := An unique ID of an route which is a integer number from 1 to 8.

<x> := An x-coordinate of the screen beginning from the left side. The range is defined by the Resolution exp
ression. It is a floating point number with 3 decimal places.

VCA Task Script Language Specification | Definitions| 5

08/16/2023| Bosch Security Systems B.V.

<y> := An y-coordinate of the screen beginning from the top. The range is defined by the Resolution
expression. It is a floating point number with 3 decimal places.

VCA Task Script Language Specification | System Integration| 6

08/16/2023| Bosch Security Systems B.V.

2 System Integration

2.1 System Overview

Figure 1: System overview of device

Figure 1 shows the parts of the architecture which are relevant for video content analysis. First, the video signal is
sent to the video encoder and the video content analysis software. The former outputs e.g. H263 or H264 streams,
the latter produces a meta stream encoded in the Bosch VCD Format. Both outputs are received by the video/VCA
dispatcher which forwards them to clients which are interested in the data. Thereby, a recording task is treated as
just another client.

The video content analysis module detects objects in the scene independently of any user defined rules. The
extracted objects and their properties are forwarded as a VCD stream to the rule engine which does the detection of
user defined rules. The output of the rule engine are up to 16 alarm flags. On the one hand, these are merged into
the VCD stream. On the other hand, the bool engine is notified about changes of alarm flags. The bool engine allows
association any kind of actions, like sending emails, triggering a relay output, notification of a video management
system, etc., to alarm flags.

Figure 2: System overview of plugin

The rule engine is configured with a script specified in the VCA Task Script Language. The same language is used in
Bosch’s forensic search applications (see Figure 2) to look for unforeseen events in recordings. There, the recorded
VCD streams are fed through another instance of the rule engine which can run with another set of rules. The
occurrences of events are displayed in a timeline which allows fast navigation to relevant video sequences. In order
to provide different kinds of forensic search tools, the rule engine is packed into a plugin which can be easily
exchanged. The IVA plugin is the first one supporting the VCA Task Script Language and configuration of the
corresponding rule engine.

VCA Task Script Language Specification | System Integration| 7

08/16/2023| Bosch Security Systems B.V.

2.2 User-defined Tasks
Via the IVA plugin the rule engine can be configured. To simplify matters, the plugin provides a comprehensive list
of predefined queries with corresponding wizards. The wizards enter automatically query code into the rule engine
script. Such code fragments are framed by comments which allow editing of tasks at a later time. Modification of
automatically generated code can lead to corrupt tasks which can no longer be interpreted by wizards.

The IVA plugin enables the definition of up to 16 tasks corresponding to the first 16 external rules of the script.
However, in order to make a user-defined rule visible in this task list, it must be wrapped as follows:

//@Task T:0 V:0 I:<n> “user defined task” {
external ObjectState #<n> := true;
//@}

Thereby, <n> is a placeholder for the ID of the user-defined rule. Furthermore, there must be no other task with
the same ID (see Predefined syntax elements). The name of the task can be specified within the quotation marks.

The number after T: indicates the task type, which should be set to 0 for user-defined tasks.

(see predefinded tasks types)

Only use user-defined task type 0 for your self-written tasks.

Supported task types:

task type type number comment

User-defined 0

Object in field 1

Crossing lines 2

Loitering 3

Condition change 5

Following route 6

Tampering 7

Remove object 8

Idle object 9

Entering field 10

VCA Task Script Language Specification | System Integration| 8

08/16/2023| Bosch Security Systems B.V.

task type type number comment

Leaving field 11

Similarity search 13

Crowd detection 14

Counter 15 obsolete with firmware version 6.30

People counter 16 obsolete with firmware version 6.10

Line counter 17

Occupancy counter 18

Flow in field 40 task for IVA Flow algorithm, obsolete for
IVA pro

Counter flow in field 41 task for IVA Flow algorithm, obsolete for
IVA pro

Motion in field 42 task for MOTION+ algorithm

Motion region detector 43 Onvif only generated task

VCA Task Script Language Specification | Syntax| 9

08/16/2023| Bosch Security Systems B.V.

3 Syntax

3.1 Types

3.1.1 Basic Types
The query language supports BOOLEAN , INTEGER , FLOAT , ANGLE and OID as basic types. The domains of

these types are as follows: BOOLEAN s take either the value true or false, INTEGER s are signed 32-bit integral

numbers, FLOAT s represent 32-bit floating numbers, ANGLE s are specified in degree, and OID s are unique
identifiers of objects.

In order to account for the periodic structure of angles, the special type ANGLE is introduced. The only operation
allowed for angles is a range check. It returns true, if there exists an equivalent angle 1 within the specified range.

There exists a special value NAN (not a number) which indicates that the value does not exist. For instance, when

the direction of an object is accessed which does no longer exist, the return value is NAN .

Example (Speeding)
The subsequent query example checks for all objects if they are moving faster than 30 meters per second; objects
which exceed this limit trigger an alarm:

external ObjectState #1 := Velocity within (30.0,*);

The function Velocity returns the speed of an object. The within operation takes the corresponding FLOAT value

and compares it with the left bounded interval (30.0,*). The resulting BOOLEAN is assigned to the ObjectState

#1 of the considered object.

3.1.2 Attributes
Events and states can be augmented with attributes. Each attribute is characterized by a basic type and a unique
name. The name is needed in order to distinguish attributes of the same type and to access the attribute. When
introducing events, the following syntax will be used to describe their attributes:

<event> -> (<type> : <name>, ... , <type> : <name>)

For states, a similar syntax is used:

<state>(<type> : <name>, ... , <type> : <name>) -> <type>

The attribute list can be empty in both cases.

VCA Task Script Language Specification | Syntax| 10

08/16/2023| Bosch Security Systems B.V.

Example (Crossing Two Lines)

The subsequent query defines two lines and triggers Event #1 if the same object passes the first line and

afterwards the second line. In order to check whether both CrossedLine events have been triggered by the
same object, the oid attributes of both events are compared. Without this condition, Event #1 would be triggered
even if one object had passed Line #1 before a completely different crossed Line #2. The keywords first and second
allow access to the attribute lists of the two events involved in a before relation.

Line #1 := { Point(10,10) Point(10, 50) Direction(0) };
Line #2 := { Point(50,10) Point(50, 50) Direction(0) };

external Event #1 := {
 CrossedLine #1 before CrossedLine #2
 where first.oid == second.oid
};

3.2 Comments
The VCA Task Script Language supports C-style comments. That means, all characters of a line following two
slashes // are ignored by the rule engine as well as all characters which are framed by /* and */. The latter kind of
commenting can be used to comment out several lines at once or a part of a single line.

3.2.1 Example

Field #1 := { // this is a comment
 Point(10, 10) /*Point(10, 50)*/ Point(50, 50) Point(50, 10)
};

/* all characters
 within this block
 are commented out */

3.3 Script normalization
The query language provides method how the following coordinates are normalized within the given max and min
values. The keyword Resolution should be placed at the beginning of the script. The Min coordinate defines the
upper left corner of the image and the Max coordinate defines the lower right corner of the image.

3.3.1 Example

Resolution := { Min{0,0} Max{1,1} };

Line #1 := {
 Point(0.10, 0.10) Point(0.10, 0.50)

VCA Task Script Language Specification | Syntax| 11

08/16/2023| Bosch Security Systems B.V.

 Point(0.50, 0.50) Point(0.50, 0.10)
};

3.4 Primitives
The query language supports several geometrical primitives. These primitives observe single objects and trigger
events on certain actions. The number of primitives which can be instantiated is limited by the memory of the
device on which the rule-engine is running. In the firmware this limits the number of trajectories to 8, and the total
number of primitives to 32.

3.4.1 Field

Syntax
Field primitives are defined in the following way:

Field #<i> := {
 Point(<x>,<y>) ... Point(<x>,<y>)
 [DebounceTime(<time>)]
 [ObjectSet(<objectset>)]
 [SetRelation(<relation>)]
};

<i> is the number of the area and must be between 1 and 32. The specified points span a polygon. This polygon
must have between 3 and 16 points, and must be simple, i.e. it must not intersect with itself. The coordinates of the
points are specified in pixels with the image resolution processed by the IVA algorithm. <time> specifies the

optional DebounceTime in seconds. Its default value is 0. When the DebounceTime is set, the state of an object,
whether it is inside or outside of the area, only changes if the object stays on the other side for at least the time
specified by <time> . This way, one can get rid of positional errors in the object tracking or multiple alarms of
objects moving along the border of an area.

If a flow detector is used the DebounceTime has a different meaning. The <time> specifies the post-alarm time

for the area. This ensure that if many short flow alarms are detected within the debounce time <time> they are
merge to a long alarm period.

ObjectSet and SetRelation specify which parts of the object are considered to determine whether it is regarded as
inside or outside. Thereby, <objectset> can be set to either BaryCenter, FootPoint or BoundingBox, where

BaryCenter is the default value. The <relation> can be switched between Intersection and Covering with
Intersection as default value. For instance, if BoundingBox and Covering are selected, an object’s bounding box
must be completely inside the specified polygon to be regarded as inside. If <objectset> is set to BaryCenter,

both <relation> options result in the same behavior, since the object set consists only of a single point.

States

InsideField #<i>(OID:oid) -> BOOLEAN

VCA Task Script Language Specification | Syntax| 12

08/16/2023| Bosch Security Systems B.V.

The state InsideField #<n> is set if object oid is inside Field #<i> .

ObjectsInField #<i> -> INTEGER

ObjectsInField #<n> returns the number of objects which are currently in Field #<i> .

Events

EnteredField #<i> -> (OID:oid)

 The event EnteredField is triggered, when an object enters Field #<i> . The object which has caused the
event can be queried by the argument oid.

LeftField #<i> -> (OID:oid)

 The event LeftField is triggered, when an object leaves Field #<i> . The object which has caused the
event can be queried by the attribute oid.

One should note that an object which is first detected within an area does not trigger the corresponding
EnteredField #<i> event.

Example
The following example triggers an alarm if the same object has first entered the specified area and later left it again.

Field #1 := {
 Point(10, 10) Point(10, 50)
 Point(50, 50) Point(50, 10)
};

external Event #1 := {
 EnteredField #1 before LeftField #1
 where first.oid == second.oid
};

3.4.2 Line

Syntax
Line primitives are defined in the following way:

Line #<n> := {
 Point(<x>,<y>) ... Point(<x>,<y>)
 Direction(<dir>)
 [DebounceTime(<time>)]
 [TriggerPoint(<triggerpoint>)]

VCA Task Script Language Specification | Syntax| 13

08/16/2023| Bosch Security Systems B.V.

};

<n> is the number of the line and must be between 1 and 16. A line must have between 2 and 16 points, whose
coordinates are specified in pixels with the image resolution processed by the IVA algorithm. With the argument
<dir> , one can choose whether any object which passes the line triggers an event or whether only objects which

pass from left to right respectively right to left are relevant. In the former case <dir> is expected to be 0, in the

latter cases <dir> takes the value 1 respectively 2. <time> specifies the optional DebounceTime in seconds. Its

default value is 0. When the DebounceTime is set, a CrossedLine #<n> event is only triggered, if the same
object will not cross the same line in the opposite direction within the specified time window <time> afterwards.
This way, one can get rid of positional errors in the object tracking or multiple alarms of objects moving along the
line. The TriggerPoint specifies which point of the object are considered to trigger a line crossing. Possible trigger
points are BaryCenter or FootPoint .

Events

CrossedLine #<n> -> (OID:oid)

 The event CrossedLine #<n> is triggered, when an object crosses Line #<n> in the specified way. The
object which has caused the event can be queried by the attribute oid.

Example
See Example "Crossing Two Lines".

3.4.3 Route

Syntax
Route primitives are defined in the following way:

Route #<j> := {
 Point(<x>,<y>) Distance(<r>)
 ...
 Point(<x>,<y>) Distance(<r>)
 Direction(<dir>)
 MinPercentage(<min>)
 MaxGap(<max>)
 [TriggerPoint(<triggerpoint>)]
};

<j> is the number of the Route and must be between 1 and 8. A Route has at least 2 and at most 8 points. The
coordinates of the points are specified in pixels with the image resolution processed by the IVA algorithm. Each
point is followed by a tolerance <r>. With these tolerances, the path of points is broadened to a stripe. Objects
which move along the stripe in the specified direction trigger the event FollowedRoute #<j> . If <dir> is set to
1, only object movements are considered which go from the first towards the last point. Is <dir> set to 2, only object

VCA Task Script Language Specification | Syntax| 14

08/16/2023| Bosch Security Systems B.V.

movements are considered which go in the opposite direction. If <dir> equals 0, any object movement within
the stripe is taken into account. Object movements which do not satisfy the directional constraint are ignored.

The parameters MinPercentage and MaxGap specify the tolerance of the detector. If Direction is set to 0, the
meaning of the two parameters is as follows. The detector remembers for each object which parts of the stripe have
been visited. If more than MinPercentage of the whole stripe are visited and the largest gap between two

visited parts (including the gap the very beginning and the very end of the stripe) is smaller than MaxGap , then the

FollowedRoute #<n> event is triggered. If a direction has been assigned to the Route, object movements
within the Route are only taken into account if the movement fits the specified direction and if the distance to the
last visited part is not larger than MaxGap. The TriggerPoint specifies which point of the object needs to follow the
route. Possible trigger points are BaryCenter or FootPoint .

Figure 3. This illustrates an object following a predefined route. The parts of the trajectories stripe
which have been visited by the object are marked in blue. The gaps in between are highlighted with a
red line.

Events

FollowedRoute #<j> -> (OID:oid)

The event FollowedRoute #<j> is triggered, when an object has followed the Route #<j> . The object
which has caused the event can be queried by the attribute oid.

Example

Route #1 := {
 Point(20, 20) Distance(5)
 Point(20, 50) Distance(5)
 Point(50, 50) Distance(5)
 Direction(0)
 MinPercentage(90)
 MaxGap(20)
};

VCA Task Script Language Specification | Syntax| 15

08/16/2023| Bosch Security Systems B.V.

external Event #1 := FollowedRoute #1;

3.4.4 Loitering

Syntax
Loitering primitives are defined in the following way:

Loitering #<i> := {
 Radius(<r>)
 Time(<time>)
};

<i> is the number of the loitering primitive and must be between 1 and 32. The loitering primitive detects objects

which stay at one place for <time> seconds. <r> specifies the spatial tolerance in meters of the loitering
detector. For the measurement of object movements in meters, the camera calibration must have been calibrated
beforehand.

States

IsLoitering #<i> (OID:oid) -> BOOLEAN

The state IsLoitering #<i> of an object oid is set, while the object stays at the same place for at least the
specified time.

Example

Loitering #1 := { Radius(5) Time(10) };
external ObjectState #1 := IsLoitering #1;

3.4.5 ColorHistogram

Syntax
ColorHistogram primitives are defined in the following way:

ColorHistogram #<i> := {
 HSV(<h>,<s>,<v>[,<weight>]) ... HSV(<h>,<s>,<v>[,<weight>])
 Similarity(<similarity>)
 Outlier(<outlier>)
};

<i> is the number of the color histogram primitive and must be between 1 and 32. The color histogram primitive
compares object colors with user-defined colors. Up to 5 basic colors can be selected with the HSV keyword. The

VCA Task Script Language Specification | Syntax| 16

08/16/2023| Bosch Security Systems B.V.

default value of the optional parameter <weight> is 1. The total weight of the basic colors must not exceed 255.

Basic colors are defined in the HSV color space, where <h> (a value between 0 and 360) represents the hue

component, <s> (a value between 0 and 100) the saturation, and <v> (a value between 0 and 100) the intensity.
Figure 4 visualizes the three components of the HSV color space.

Figure 4. HSV cone

<similarity> is a value between 0 and 100 and specifies how similar a color histogram must be in order to be

regarded as a match. The more similar two histograms are the larger is their <similarity> . The parameter

<outlier> allows partial matches between the user-defined colors and the object’s color histogram, i.e. the
user-defined colors cover only a subset of the object’s color histogram and the remaining colors should be regarded
as outliers. For instance, when looking for persons wearing a red jacket, about 50% of the object’s colors should be
red and the other 50% don’t care.

States

SimilarToColor #<i> (OID:oid) -> BOOLEAN

The state SimilarToColor #<i> of an object oid is set, while the latest color histogram of this object is at
least as similar to the user-defined color histogram as the specified threshold.

Example
The following color histogram detects objects, which contain at least 25% reddish colors and at least 25% dark
colors.

VCA Task Script Language Specification | Syntax| 17

08/16/2023| Bosch Security Systems B.V.

ColorHistogram #1 := {
 HSV(0,100,100)
 HSV(0,0,0)
 Similarity(90)
 Outliers(50)
};

external ObjectState #1 := SimilarToColor #1;

3.4.6 FlowDetector

Syntax
FlowDetector primitives can be defined in one of the following ways:

FlowDetector #<i> := {
 [Direction(<minangle>,<maxangle>)]
 [Direction(<minangle>,<maxangle>)]
 [Velocity(<minvelocity>,<maxvelocity>)]
 [Activity(<minactivity>,<maxactivity>)]
 [Field #<m>]
};

OR

FlowDetector #<i> := {
 CounterFlow(<timewindow>,<angletol>)
 [Velocity(<minvelocity>,<maxvelocity>)]
 [Activity(<minactivity>,<maxactivity>)]
 [Field #<m>]
};

The flow detector operates on the significant flow field computed by the IVA algorithms. Each detected flow vector
has to pass a set of user defined filters before it triggers an alarm. In the first definition, up to two directional filters
can be defined. If two directions are specified, a motion vector must pass at least one for further processing. Each
directional filter consists of a <minangle> and <maxangle> specified in degree. The coordinate system for
angles is shown in Figure 5.

In the second definition, the direction is automatically determined based on a main flow analysis. The last < time

window> seconds are considered in order to compute the main flow direction. As soon as a dominant direction
could be detected, this direction defines the main flow and activates the flow detector. If there is no dominant
direction within the last <timewindow> seconds, the flow detector is inactive. A motion vector going in the opposite
direction to the main flow with an angular tolerance of at most <angletol> degree passes the directional filter of the
second definition. If a spatial constraint is specified, only motion vectors within Field #<m> are taken into
account when estimating the main flow direction. The other filters do not apply to the main flow estimation.

Additional filters for the velocity, activity and space can be set up. Thereby, the <minvelocity> and

<maxvelocity> are specified in pixels per second. If a Field #<m> is added to the definition, motion vectors

VCA Task Script Language Specification | Syntax| 18

08/16/2023| Bosch Security Systems B.V.

outside the Field #<m> are ignored during processing. If no field is added, all motion vectors are considered. The
activity measures the number of active motion vectors, i.e. number of motion vectors which have passed all filters.
Thereby, the activity is 0, if no motion vector is active. The maximum activity of 100 is reached, when the complete
specified field is filled with active motion vectors. With <minactivity> and <maxactivity> the user can
select an activation interval within which the flow detector fires an alarm. Thereby, the lower bound <minactivity>
is excluded from the interval. This implies that the flow detector will only trigger an alarm if there is any motion.

If a Field #<m> is present in the definition of a flow detector, the flow detector inherits the DebounceTime of the
specified field. Thereby, the meaning of the DebounceTime is that the flow field must pass all the constraints for at
least DebounceTime many seconds, before the flow detector will trigger an alarm.

States

DetectedFlow #<i> -> BOOLEAN

The state DetectedFlow #<i> is set, while there is a significant flow fulfilling all the constraints defined in the
corresponding FlowDetector #<i> definition.

Example
The following example triggers an alarm, if a significant motion from right to left has been detected within the
specified rectangle.

Field #1 := {
 Point(10, 10) Point(10, 50)
 Point(50, 50) Point(50, 10)
};

FlowDetector #1 := { Direction(-45,45) Field #1 };
external SimpleState #1 := DetectedFlow #1;

3.4.7 CrowdDensityEstimator

Syntax
CrowdDensityEstimator primitives must be defined in the following way:

CrowdDensityEstimator #<n> := {
 [Activity(<minactivity>,<maxactivity>)]
 CrowdDensityField #<n>
 [DebounceTime(<seconds>)|SmoothingTime(<seconds>)]
};

The crowd level estimation detector uses the reference image, which should show the empty scene, to detected the
crowd in front of the background reference. This scene is limited by the CrowdDensityField which must be specified
in advance. The IVA algorithm calculates a crowd level activity value for the given region which goes from zero to
100%. The trigger activity level can be limited by setting the activation interval <minactivity> and <maxactivity>.
The crowd activity level is calculated every second. To ignore a short-term crowd level jump, the DebounceTime or

VCA Task Script Language Specification | Syntax| 19

08/16/2023| Bosch Security Systems B.V.

SmoothingTime filter can be set. If DebounceTime is used no alarm will be set if the crowd level will be within the
activity thresholds at least the specified period of time. Else if SmoothingTime is used the average over the specifed
period must be within the activity thresholds to trigger an alarm.

States

 EstimatedCrowdDensity #<n> -> BOOLEAN

 The state EstimatedCrowdDensity #<n> is set, while there is a significant crowd level fulfilling all the

constraints which has been defined in the corresponding CrowdDensityEstimator #<n> definition.

Example
The following example triggers an alarm, if the crowd level is at least 10s greater or equal to 25% within the
specified crowd field which has to be specified and saved to the device before the query or the recording is done.

CrowdDensityEstimator #1 := { Activity(25,100)
 CrowdDensityField #1
 DebounceTime(10) };

external SimpleState #1 := EstimatedCrowdDensity #1;

3.4.8 MotionDetector

Syntax
MotionDetector primitives must be defined in the following way:

MotionDetector #<n> := {
 [Activity(<minactivity>,<maxactivity>)]
 [Size(<minsize>,<maxsize>)]
 [Field #<n>]
};

The motion detector triggers an alarm if the provided motion cells fulfill the defined criteria.

The MotionDetector can operate on the whole screen or on the specified Field. The trigger activation level can be
limited by setting the Activity interval <minactivity> and <maxactivity>. The activity is specified in percent of the
selected area. Furthermore the trigger activation level can by limited by the size of the connected cells (Size). This
interval (<minsize>,<maxsize>) is specified in percent of the whole screen.

States

DetectedMotion #<n> -> BOOLEAN

 The state DetectedMotion #<n> is set, while there is a significant motion level fulfilling all the constraints which has
been defined in the corresponding MotionDetector #<n> definition.

VCA Task Script Language Specification | Syntax| 20

08/16/2023| Bosch Security Systems B.V.

Example
The following example triggers an alarm, if the size of connected cells is greater or equal to 0.5% of the whole
screen.

MotionDetector #1 := { Size(0.5, 100) };
external SimpleState #1 := DetectedMotion #1;

3.4.9 SoundDetector

Syntax
SoundDetector primitives must be defined in the following way:

SoundDetector #<n> := {
 <classnames>
 [MinConfidence(<confidence>)]
 [Direction(<min>,<max>)]
};

The SoundDetector triggers an alarm if an sound alarm event fulfills the defined criteria.

The SoundDetector must be provided with a class, subclass audio. The minimum confidence is optional and is in
the range of 0..100. Also optional is a direction filter which evaluates the provided direction of arrival (DOA). Note:
Direction 0 with 0 tolerance means no direction filter is applied.

DetectedSound #<n> -> BOOLEAN

 The state DetectedSound #<n> is set, when the corresponding SoundDetector #<n> is true.

Example
The following example triggers an alarm, if a gunshot has been detected with a minimum confidence of 40 and DOA
is between -45 and 45 degree.

SoundDetector #1 := { Gunshot MinConfidence(40) Direction(-45, 45) };
external SimpleState #1 := DetectedSound #1;

3.5 Object-Specific Events
The main task of the IVA algorithm is object detection and object tracking. Besides the position and other properties
of the currently detected objects, the algorithm notifies about basic object events. When the algorithm detects a
new object, an Appeared event is triggered. Correspondingly, a Disappeared event is sent, as soon as an object gets
lost.

Merged, Idled, and Removed are special cases of disappearing objects with the following meaning. If two objects
come too close to each other, one of the two becomes partially hidden by the other. This situation is indicated by a
Merged event. If an object does not move at all for a certain time, an Idled event is triggered. This happens if a
person leaves an object like a bag, somewhere. Similarly, an object can be picked up by a person triggering a

VCA Task Script Language Specification | Syntax| 21

08/16/2023| Bosch Security Systems B.V.

Removed event. A special case of an appearing object is when it was previously hidden by another object. E.g. if two
pedestrians pass each other, one can become hidden during the passing and reappears after the passing. This
reappearing is indicated by a Split event, the counterpart of the Merged event.

3.5.1 Counter

Syntax
Counters can be defined in one of the following ways:

[external] Counter #<n> := { Event #<e> [Text(“<string>”)] [TopLeft(<x>,<y>)]
[Mode(KeepMax|Wraparound) within(<min>,<max>)] };
OR
[external] Counter #<n> := { Counter #<c> + Counter #<k> [Text(“<string>”)]
[TopLeft(<x>,<y>)] [Mode(KeepMax|Wraparound) within(<min>,<max>)] };
OR
[external] Counter #<n> := { Counter #<c> - Counter #<k> [Text(“<string>”)]
[TopLeft(<x>,<y>)] [Mode(KeepMax|Wraparound)within(<min>,<max>)] };
OR
[external] Counter #<n> := { <num-expr> [Text(“<string>”)] [TopLeft(<x>,<y>)]
[Mode(KeepMax|Wraparound) within(<min>,<max>)] };

<e> , <c> , <k> stands for event or counter numbers which are previously defined, n is the number of the
counter defined now.

<string> is a maximal 32 byte utf-8-encoded string.

<x> , <y> are the x and y coordinates in the resolution which is defined by Resolution (see Script
Normalization).

<min> , <max> are the minimum and maximum counter values which are displayed.

The Counter can either count the number of triggered event or a counter can be assigned the sum or difference of
two counters or a non-Boolean state. Moreover, the keyword external indicates that the counter value is
added to the VCD stream as well as included in the rcp counter message. Hence, without this keyword the counters
are only internally used and the current value cannot be displayed. Up to 32 counters can be configured. The
default range of each counter is between 0 and the maximum of a 32 bit value.

The following optional arguments can be set: Each counter can be named via Text(“<string>”) in which the

string is a 32 byte utf-8 encoded string. The counter allows two different kinds of modes – Mode(KeepMax) or

Mode(Wraparound) . If the mode KeepMax is set, the counter remains at the upper bound. In the letter mode

Wraparound the counter starts again with the lower bound (e. g. 0). The minimum and maximum bound can be
set with the argument within (<min>, <max>), in which the lower bound corresponds to <min> and the upper
bound to <max>. The position of the displayed counter value in the video can be defined by the keyword
TopLeft(<x>,<y>), which indicates the position within the frame. The origin is in the upper left corner.

Generally, a counter does not trigger an alarm. In order to do so, the counter needs to be assigned to a state as
exemplarily shown:

VCA Task Script Language Specification | Syntax| 22

08/16/2023| Bosch Security Systems B.V.

external SimpleState #<n> := Counter #<n> within(<min>, <max>);

Therefore, an alarm is fired as soon as the counter value is within the boundary defined by <min> and <max>.

Example

ObjectState #32 := true;
Event #2 := OnSet ObjectState #32;
external Counter#5:= { Event#2 Text("Every 5th:") TopLeft(4,14) within(0,5) Mode
(Wraparound) };
external SimpleState#2:= Counter#5 within(5,*);

3.5.2 Object Events
Object specific events can be triggered by appeared and disappeared objects.

Events
The following events are triggered if an object appears, disappears, stands still, or starts moving.

Appeared (OID: oid)
Disappeared (OID: oid)
Idled (OID: oid)
Removed (OID: oid)

Example

external Event #1 := Idled;

3.6 Object Properties
Each tracked object has a set of properties. These properties include the object’s position, its direction of
movement, its speed, its size, and its bounding box. Whereas the position is only indirectly accessible via
geometrical primitives, the other properties are directly available in conditional expressions via the subsequent
functions. All the following functions return NAN, if either the object does not have this property or if the object
does not exist at all. For each property there exists a below-mentioned state which returns true if the property is
present and false otherwise. For all subsequent functions and states, the oid is optional if the attribute list of the
current scope contains the argument OID:oid.

3.6.1 Functions

Direction (OID:oid) -> ANGLE

VCA Task Script Language Specification | Syntax| 23

08/16/2023| Bosch Security Systems B.V.

This function returns the current direction in degree of object oid. If no direction is available for this object, the
result is NAN. Directions are expressed in image coordinates. Thereby, a movement from the right image border to
the left border corresponds to 0 degree, from the top border to the bottom border corresponds to 90 degrees, from
the left border to the right border corresponds to 180 degrees, and from the bottom border to the top border
corresponds to 270 degrees (see Figure 5).

Figure 5: Directions

Velocity (OID:oid) -> FLOAT

This function returns the current velocity in meters per second of object oid. The speed is estimated using the
object’s translation in object coordinates and camera calibration parameters. If no velocity is available for this
object, the result is NAN.

AspectRatio (OID:oid) -> FLOAT

This function returns the current aspect ratio of object oid. It is defined as the ratio of height and width of the
object’s bounding box. If no bounding box is available for this object, the result is NAN. A square has an aspect ratio
of 1. An object, which is two times higher than wide, has an aspect ratio of 2 (see Figure 6).

VCA Task Script Language Specification | Syntax| 24

08/16/2023| Bosch Security Systems B.V.

Figure 6: Aspect ratio definition

ObjectSize (OID:oid) -> FLOAT

This function returns the current size in square meters of object oid. The size is estimated based on the shape of the
object and camera calibration parameters. If no size is available for this object, the result is NAN.

RelativeObjectSize (OID:oid) -> FLOAT

This function returns the current size relative to the screen size (from 0.000 to 1.000) of object oid. The size is
calculated based on the shape of the object.

FaceWidth (OID:oid) -> FLOAT

This function returns the current width of a detected head in pixels assigned to object oid. If no face has been
detected for this object, the result is NAN.

MaxFaceWidth (OID:oid) -> FLOAT

This function returns the maximum width over all so far detected heads assigned to object oid. If there was no
detection for this object so far, the result is NAN.

3.6.2 States

HasDirection (OID:oid) -> BOOLEAN

returns true, if the direction of the object with object ID is available for the current frame. If the object is not present
in the current frame, the return value is false.

VCA Task Script Language Specification | Syntax| 25

08/16/2023| Bosch Security Systems B.V.

HasVelocity (OID:oid) -> BOOLEAN

returns true, if the velocity of the object with object ID is available for the current frame. If the object is not present
in the current frame, the return value is false.

HasAspectRatio (OID:oid) -> BOOLEAN

returns true, if a bounding box of the object with object ID is available for the current frame. If the object is not
present in the current frame, the return value is false.

HasObjectSize (OID:oid) -> BOOLEAN

returns true, if a bounding box of the object with object ID is available for the current frame. If the object is not
present in the current frame, the return value is false.

HasColor (OID:oid) -> BOOLEAN

returns true, if a color histogram of the object with object ID is available since the last appearance of the object. If
the object is not present in the current frame, the return value is false.

HasFace (OID:oid) -> BOOLEAN

returns true, if a head is detected on the object with object ID in the current frame. If the object is not present in the
current frame, the return value is false.

HadFace (OID:oid) -> BOOLEAN

returns true, if a head has been detected on the object with object ID since the last appearance of the object. If the
object is not present in the current frame, the return value is false.

HasClass (<classnames>) -> BOOLEAN

returns true, if a class of the specified class names is detected at the object in the current frame. If the object is not
present in the current frame, the return value is false.

VCA Task Script Language Specification | Syntax| 26

08/16/2023| Bosch Security Systems B.V.

•

•

•

•

•

•

•

•

•

•

•

HadClass (<classnames>) -> BOOLEAN

returns true, if a class of the specified class names has been detected at the object since the last appearance of the
object. If the object is not present in the current frame, the return value is false.

<classnames> is a list of following class names separated by empty space:

Person, a walking person (or standing person available for 2D/3D traffic
tracking mode)

Vehicle, a vehicle (e.g. one of the following Bike, Car, Truck, ...)
available for 2D/3D traffic tracking mode

Bike, a bicycling bike or motorcycle

Bicycle, a bicycle available for 2D/3D traffic tracking mode

Motorcycle, a motorcycle available for 2D/3D traffic tracking mode

Car, a driving car (or standing car available for 2D/3D traffic tracking
mode)

Truck, driving big car, truck or bus (or standing truck or bus available
for 2D/3D traffic tracking mode)

Bus, a bus available for 2D/3D traffic tracking mode

CT, class generated by Camera Trainer

Weapon, a long gun or short gun carried by a person (available for visual
gun detection mode)

NoClass, none of the above classes

HasSubclass (CT, <subclassid>) -> BOOLEAN

returns true, if a subclass of the specified detector (currently only CT supported) is detected at the object in the
current frame. If the object is not present in the current frame, the return value is false. This is introduced in
firmware 7.60. The <subclassid> is the number shown in Camera Trainer tab or on the class flag. (A synonym
introduced in firmware 7.10 is SOD, which is deprecated.)

3.7 Tamper States
The IVA algorithms can detect tampering of cameras. The output of the tamper detection is available via the
following Boolean states:

SignalTooNoisy -> BOOLEAN

If the video signal becomes too noisy, such that automatic object detection becomes impossible, the
SignalTooNoisy state is enabled. This can happen, if an analog video signal is transmitted over a large distance or if
the sensitivity of the camera sensor is not sufficient in night vision applications.

SignalTooDark -> BOOLEAN

VCA Task Script Language Specification | Syntax| 27

08/16/2023| Bosch Security Systems B.V.

If the video signal becomes too dark, such that automatic object detection becomes impossible, the SignalTooDark
state is enabled. This can happen, if the camera is covered by a sheet, such that almost black images are recorded.

SignalTooBright -> BOOLEAN

If the video signal becomes too bright, such that automatic object detection becomes impossible, the
SignalTooBright state is enabled. This can happen, if the camera is dazzled by a strong light source.

SignalLoss -> BOOLEAN

If the video signal is lost, the SignalLoss state is set.

GlobalChange -> BOOLEAN

If most of the image content has changed, the GlobalChange state is enabled. This can happen, if the camera is
moved or if an object comes too close to the camera.

RefImageCheckFailed -> BOOLEAN

If a reference image has been set during the configuration of the IVA algorithm and the reference checking of the IVA
algorithm has been enabled, IVA detects manipulations of the camera by comparing the current video signal with
the preset reference image. Significant differences between the two images are recorded in the VCD stream. This
information can be accessed from the query language via the RefImageCheckFailed state.

3.7.1 Example
The following query triggers an alarm on any detected tamper action.

external SimpleState #1 := SignalTooNoisy or SignalTooDark or SignalTooBright or
SignalLoss or GlobalChange or RefImageCheckFailed;

One should note that in this example it is important to work with a user-defined SimpleState instead of an
ObjectState, since the latter is only evaluated for detected objects. However, when the camera is tampered, there
are usually no detections.

3.8 User-defined States
User-defined states are always Boolean states, i.e. these states take either the value true or false. The user-defined
states have either no attributes or the object ID has attribute. The former states are called SimpleStates, whereas
the latter ones are called ObjectStates. In the subsequent sections their syntax and usage is explained in more
detail.

VCA Task Script Language Specification | Syntax| 28

08/16/2023| Bosch Security Systems B.V.

3.8.1 SimpleStates
SimpleStates are defined in the following way:

[external] SimpleState #<n> := <condition> [with <stateoptions>];

Thereby, <condition> is a placeholder for a Boolean expression. The user can specify up to 32 states (from 1 to 32)
via the number <n>, but only the first 16 states can be external. The same SimpleState cannot be defined twice. The
attribute list of a SimpleState is always empty. Therefore, one cannot access object specific properties in the
condition clause of SimpleStates. The <stateoptions> are introduced with firmware 7.60. Possible Options are
DebounceTime(<time>) and AggregationTime(<time>) . The DebounceTime specifies the minimum

time that a SimpleState must be set before it triggers an alarm. If an alarm is triggered, the reset of the alarm is
delayed by the time specified as AggregationTime. If the SimpleState is set again while AggregationTime
countdown runs the reset is stopped and the delay starts again on next unset of the SimpleState. See also Figure 7.

Figure 7: Debounce Time and Aggregation Time of a SimpleState

The following table summarizes the predefined states, which can be used instead of the <condition>
placeholder besides other previously defined SimpleStates:

SignalTooNoisy

SignalTooDark

SignalTooBright

SignalLoss

GlobalChange

RefImageCheckFailed

CameraMoved (added with firmware 7.60)

Example
The following query triggers an alarm if a movement of the camera was detected for 3 seconds it is set at least 10
seconds even if there is a flickering of the state in between:

VCA Task Script Language Specification | Syntax| 29

08/16/2023| Bosch Security Systems B.V.

external SimpleState #1 := CameraMoved with DebounceTime(3) AggregationTime(10);

3.8.2 Boolean Composition of Conditions
Several conditions can be composited. The syntax of conjunctions is as follows:

<condition> := <condition> and <condition>

<condition> := <condition> && <condition>

Similarly, disjunctions are written as:

<condition> := <condition> or <condition>

<condition> := <condition> || <condition>

The negation of conditions is:

<condition> := not <condition>

<condition> := !<condition>

Ambiguities in the evaluation of expressions are resolved by priorities. Negations have the highest priority, followed
by conjunctions, and last disjunctions. Furthermore, the priority can be controlled by embracing sub-expressions
with brackets:

<condition> := (<condition>)

3.8.3 Properties in Conditions
Properties and non-Boolean states can be used as condition in the following way:

<condition> := <num-expr> within (<min>, <max>)

The within keyword checks if the specified <num-expr> is within the specified interval. The interval bounds, <min>

and <max> , are constant values. If one of the two bounds is replaced by an asterix * , the corresponding bound is

ignored. A <num-expr> can either be an attribute, a constant value, a non-Boolean state or a property. In

combination with the within keyword, <num-expr> must be either of type INTEGER, FLOAT, or ANGLE.

Besides the within relation, a simple equal operation is allowed for any non-Boolean type, as long as both operands
are of the same type:

VCA Task Script Language Specification | Syntax| 30

08/16/2023| Bosch Security Systems B.V.

<condition> := <num-expr> == <num-expr>

<condition> := <num-expr> != <num-expr>

ObjectsOnScreen , {{ObjectsInField}} and ObjectsInState are non-Boolean states which can be used in

the definition of a SimpleState #<n> . It returns the number of objects which are currently detected by the
VCA algorithm on the screen, in a field or which trigger an object state.

One should note that the conditions described in this section return false, if the value of one <num-expr> is NAN.

Example
The following query triggers an alarm if at least 2 objects are detected by the VCA algorithm.

external SimpleState #1 := ObjectsOnScreen within (2,*);

The subsequent example triggers an event, if two different objects cross the same line. Thereby, the second object
must cross the line at most 10 seconds after the first.

Line #1 := {
 Point(10,10) Point(50,50)
 Direction(0)
};

external Event #1 := {
 CrossedLine #1 before(0,10) CrossedLine #1
 where first.oid != second.oid
};

3.8.4 ObjectStates
ObjectStates are defined in the following way:

[external] ObjectState #<n> := <condition> [with DebounceTime(<time>)];

Thereby, <condition> is a placeholder for a Boolean expression. The user can specify up to 32 states (from 1 to

32) via the number <n> , but only the first 16 states can be external. The same ObjectState cannot be defined
twice.

In contrast to SimpleStates , which are instantiated only once, ObjectStates are instantiated for each
object visible in the processed frame. In order to distinguish all the instances, the object ID is associated with each
instance as an attribute. Hence, an ObjectState ’s attribute list is:

ObjectState #<n>(OID:oid) -> BOOLEAN

VCA Task Script Language Specification | Syntax| 31

08/16/2023| Bosch Security Systems B.V.

The DebounceTime is introduced with firmware 7.60. In contrast to SimpleStates DebounceTime the time is
evaluated for each object. The ObjectState is triggered if the object remains in the state for at least the given
DebounceTime. See also Figure 8.

Figure 8: DebounceTime of ObjectState

In the <condition> clause, this object ID can be used to access object properties or earlier defined ObjectStates

of the same object in addition to the ones which are allowed within the <condition> clause of SimpleStates.
The following list enumerates Boolean states which require as attribute an object ID and which can therefore be
used as condition of an ObjectStates:

InsideField #<n> where n is the number of an area primitive.

IsLoitering #<n> where n is the number of a loitering primitive.

The following object properties and non-Boolean states are also available within the definition of ObjectStates:

ObjectsInState #<n> where n is the number of an object state.

ObjectsInField #<n> where n is the number of an area primitive.

ObjectsOnScreen

Direction

VCA Task Script Language Specification | Syntax| 32

08/16/2023| Bosch Security Systems B.V.

Velocity

AspectRatio

ObjectSize

RelativeObjectSize

Example
The following query detects objects, which are speeding within a specified area.

Field #1 := {…};

external ObjectState #1 := Velocity within (30,*) and InsideField #1;

The following query detects objects, which have an upright aspect ratio for at least 5 seconds.

external ObjectState #2 := (AspectRatio within (2,*)) with DebounceTime(5);

3.9 User-defined Events
In the previous sections, several events have been introduced which are automatically generated together with the
corresponding primitives. The user can define new events by using temporal relations between events. Besides
temporal relations, additional conditions can be formulated in order to constrain events further. With these
conditions, the user has access to event attributes and can formulate constraints for them. In the subsequent
sections, the different possibilities are described in more detail.

3.9.1 Basic Syntax
User events are defined in the following way:

[external] Event #<n> := <event>;

Thereby, <event> is a placeholder for either predefined events (like EnteredField as introduced in the previous
sections), another already defined user-defined event, or more complex event expressions as described in the
upcoming subsections. The user can specify up to 32 events (from 1 to 32) via the number <n> , but only the first

16 events (<n> from 1 to 16) can be external. The same user event cannot be defined twice. Event #<n>

inherits the attribute list from <event> , i.e. it provides the same list of attributes as <event> .

When the rule engine detects an external user-defined event, the corresponding alarm flag is set for exactly one
processed frame. If the same alarm flag is used by several external rules (e.g. external ObjectStates or external
SimpleStates), the alarm flag is set if any of the rules is active.

VCA Task Script Language Specification | Syntax| 33

08/16/2023| Bosch Security Systems B.V.

The following table summarizes the predefined events which can be used as <event> placeholder:

FollowedRoute #<j> where j is the id of a Route primitive.

CrossedLine #<n> where n is the id of a line primitive.

EnteredField #<i> where i is the id of an area primitive.

LeftField #<i> where i is the id of an area primitive.

Appeared

Disappeared

Idled

Removed

Merged

Split

3.9.2 Temporal Relations
The most interesting operations on events are temporal relations. The before keyword combines two <event> s
in the following way. If the second event is triggered and the first event has been triggered before, another event
with the same attributes as the second one is triggered. In its simplest form the syntax is as follows:

<event> := { <event> before <event> };

The curly brackets are mandatory to avoid ambiguous associations of nested constructions.

With the following extension, a time interval can be specified which limits the chronology of the two events further.

<event> := { <event> before(<from>,<to>) <event> };

VCA Task Script Language Specification | Syntax| 34

08/16/2023| Bosch Security Systems B.V.

In this formulation, the first event is only a candidate for the second event, if it has occurred at least <from>

seconds and at most <to> seconds before the second event. Replacing <to> by the * symbol, an infinite time

interval can be defined starting with <from> .

Adding the not keyword, it is even possible to check whether the first event has not occurred before the second
event in the specified time interval (the time interval is again optional):

<event> := { <event> not before(<from>,<to>) <event> };

The or keyword can be used to trigger an event if either event A or event B has happened. The attribute list of both
events must be the same:

<event> := <event> or <event>;

In this case curly brackets can be omitted.

Example

Event #1 marks objects which cross one of two lines. Event #2 detects a pair of objects where one object

passed the first Line #1 and one object passed the second Line #2 after at most 5 seconds. Event #3 is

triggered by objects which pass Line #2 while Line #1 was not crossed for 5 seconds.

Line #1 := { Point(10, 10) Point(10, 50);
Line #2 := { Point(50, 50) Point(50, 10);
external Event #1 := CrossedLine #1 or CrossedLine #2;
external Event #2 := { CrossedLine #1 before(0,5) CrossedLine #2 };
external Event #3 := { CrossedLine #1 not before(0,5) CrossedLine #2 };

3.9.3 Conditions
Often it is necessary to constrain events by their attributes or by properties of involved objects. In the VCA Task
Script Language, this is supported via the where clause.

<event> := { <event> where <condition> };

The rule engine will only trigger, if the <condition> is satisfied at the time when the <event> occurred.

Which states and properties can be used in the <condition> clause depends on the attribute list of <event> .

In principle, events with empty attribute list can have a <condition> clause similar to the one of SimpleStates.

If the attribute list contains OID:oid as attribute, the <condition> clause is similar to the one of ObjectStates.

VCA Task Script Language Specification | Syntax| 35

08/16/2023| Bosch Security Systems B.V.

With the so-far introduced concepts, it would be possible to detect whether the same object has passed first one
line and afterwards another line. The VCA Task Script Language solves this task with a combination of before and
where keywords.

<event> := { <event> before <event> where <condition> };

In the <condition> clause following the where keyword, it is possible to access attributes of both events

involved in the before relation. An attribute <x> of the left event can be accessed via first. <x> whereas

attributes of the right event are available via second <x> . If an attribute <x> belongs exclusively to one of the

two events, the specification of first and second is optional. If an attribute <x> belongs to both events, the
attribute is associated to the second event, which is the more recent one. Any of the other before variants described
in subsection Temporal Relations can be similarly combined with a <condition> clause.

Example

With these extensions, objects can be found which cross two lines in a row at a certain speed, as shown by Event

#1 . Event #2 detects if two persons were passing a gate close to each other and were separating on the other
side. For robustness, the size of the objects is checked.

Line #1 := { Point(10, 10) Point(10, 50);
Line #2 := { Point(50, 50) Point(50, 10);
external Event #1 := { CrossedLine #1 before(0,5) CrossedLine #2
 where first.oid == second.oid and
 Velocity(second.oid) within (30,*)
};

external Event #2 := { CrossedLine #1 before(0,5) Split
 where first.oid == second.oid and
 ObjectSize(second.oid2) within (1,*) and
 ObjectSize(second.oid) within (1,*)
};

3.9.4 State Changes
In order to detect e.g. changes of an object’s appearance, the keywords OnChange , OnSet , and OnClear
are introduced. They can be combined with any user-defined state and trigger an event either if the state changes
its value, if the state becomes true, or if the state becomes false. The syntax is as follows:

<event> := OnChange <state>;
<event> := OnSet <state>;
<event> := OnClear <state>;

Thereby, <state> is either a previously defined ObjectState #<n> or SimpleState #<n> . The

attribute list of the <state> is passed to corresponding change event. For instance, the attribute list of an

VCA Task Script Language Specification | Syntax| 36

08/16/2023| Bosch Security Systems B.V.

OnChange SimpleState #<n> event is empty, whereas the attribute list of an OnSet ObjectState

#<n> has OID:oid as its only attribute.

Example
The following query detects objects which are changing their shape from tall and thin to flat and wide.

ObjectState #1 := AspectRatio within (1.2,*);
ObjectState #2 := AspectRatio within (*,0.8);
external Event #1 := {
 OnClear ObjectState #1 before OnSet ObjectState #2
 where first.oid == second.oid
};

ObjectState #1 is true, if the object is taller than wide. ObjectState #2 is true, if the object is wider than
tall. For objects which are almost quadratic both states are false. The task is to look for objects whose
ObjectState #1 was set some time ago and whose ObjectState #2 is now set. Hence, it is sufficient to

wait for OnSet ObjectState #2 and check if OnClear ObjectState #1 has happened before.

3.9.5 Temporary States
In order to create temporary states triggered by an event the keyword within is used after an event. This can be
used to delay an alarm, to extend an alarm state or to temporary combine with other states. The syntax is as
follows:

<state> := <event> within(<min>, <max>);

Thereby, <event> is either a previously defined Event #<n> or an arbitrary predefined event e.g.

EnteringField , Appeared or CrossingLine . The attribute list of the <state> is passed to

corresponding change event. For instance, the attribute list of an OnChange SimpleState #<n> event is

empty, whereas the attribute list of an OnSet ObjectState #<n> has OID:oid as its only attribute.

Examples
The following query alarms for 30s if an object appears, even if the object vanished meanwhile.

external SimpleState#1:= Appeared within(0,30);

The next line delays the alarm after object appears for 10s. If the object vanishes meanwhile no alarm is triggered.

external ObjectState #2 := Appeared within(10,*);

An object state ObjectState depends on the object and is false if the object is gone, were as a SimpleState

would stay true till algorithm is reset, e.g. on reconfigure. Therefore, an ObjectState is used here.

VCA Task Script Language Specification | Syntax| 37

08/16/2023| Bosch Security Systems B.V.

The next example is a more complex one, which shows how the temporary state can be combined with other states.
First a Counter #3 is defined which counts objects in an arbitrary object state. If no objects are in this state the

SimpleState #31 is true. The resulting state external SimpleState #3 is the SimpleState #31 delayed on
activation by 5 seconds.

ObjectState #32 := ObjectOnScreen;
Counter #3:= { ObjectsInState #32 };
SimpleState #31:= Counter #3 within(0,0);
external SimpleState #3:= SimpleState #31 and !(OnChange SimpleState #31 within(0,5))
;

VCA Task Script Language Specification | Change History| 38

08/16/2023| Bosch Security Systems B.V.

•

•

•

•

•

•
•

•

•
•
•
•

•
•

•
•

•

4 Change History
Revision Date Comment

1.14 2023-08-16 Description for Task Script Language for firmware 9.0

added class Weapon

1.13 2022-12-02 Description for Task Script Language for firmware 8.80

additional AudioAIDetector

1.12 2021-08-20 Description for Task Script Language for firmware 8.1

additional classes added

1.11 2019-11-13 Description for Task Script Language for firmware 7.6

DebounceTime is added to SimpleState and
ObjectState and AggregationTime is added to
ObjectState
class CT is introduced

1.10 2019-04-01 Description for Task Script Language for firmware 7.1

a state can be used to generate temporary state
class SOD is introduced

1.9 2018-11-02 Description for Task Script Language for firmware 6.6

an event can be used to generate temporary
state

1.8 2016-05-23 Description for Task Script Language for firmware 6.3

extended ObjectSet by FootPoint
added TriggerPoint to Line and Route
extended number of allowed Points in Line
added RelativeObjectSize in section “Object
Properties”
added ObjectInState non-Boolean state
extended Counter Description

1.7 Description for Task Script Language for firmware 6.0

added definition of HasClass and HadClass
added definition of MotionDetector

1.6 2013-02-26 Description for Task Script Language for firmware 5.6

added definition of Resolution

VCA Task Script Language Specification | Change History| 39

08/16/2023| Bosch Security Systems B.V.

•

•
•

•
•
•
•
•

•
•

•

1.5 2012-04-11 Description for Task Script Language for firmware 5.5

added definition of Counter

1.4 2012-01-30 Description for Task Script Language for firmware 5.0

added definition of CrowdDensityEstimator
added simple state EstimatedCrowdDensity

1.2 23.04.2008 Description for Task Script Language for firmware 4.0

added definition of FlowDetector
added state FlowDetected
added states HasFace and HadFace
added properties FaceWidth and MaxFaceWidth
added Field options ObjectSet and SetRelation

1.1 16.10.2007 Description for Task Script Language for firmware 3.5

added definition of ColorHistogram
added state SimilarToColor for comparison of
object histogram and user-defined histogram
added states HasObjectSize, HasAspectRatio,
HasVelocity, HasDirection, and HasColor in
order to check presence and absence of object
properties

1.0 15.10.2007 Description for Task Script Language for firmware 3.0

	Definitions
	Events & States
	Properties
	Rules
	Rule Engine
	Method of describing syntax
	Predefined syntax elements

	System Integration
	System Overview
	User-defined Tasks

	Syntax
	Types
	Basic Types
	Attributes

	Comments
	Example

	Script normalization
	Example

	Primitives
	Field
	Line
	Route
	Loitering
	ColorHistogram
	FlowDetector
	CrowdDensityEstimator
	MotionDetector
	SoundDetector

	Object-Specific Events
	Counter
	Object Events

	Object Properties
	Functions
	States

	Tamper States
	Example

	User-defined States
	SimpleStates
	Boolean Composition of Conditions
	Properties in Conditions
	ObjectStates

	User-defined Events
	Basic Syntax
	Temporal Relations
	Conditions
	State Changes
	Temporary States

	Change History

